Archive
Buying a New CAD Workstation? Know Your Software System Requirements
Where do you begin your quest for the right workstation? This particular hardware search should start with your software.
Let’s be real: Nobody relies on just one application over the course of a day. We’re all bouncing between disparate tasks and windows. But for the majority of CAD professionals, there is one application — or maybe a couple — that consumes the bulk of your hours at the desk. What’s the app that dominates your day? Got it? Now hit the web site of the software developer and find the minimum and recommended system requirements for your killer app. AutoCAD users can find this information at http://usa.autodesk.com/autocad/system-requirements.
Minimum is the Starting Point Only
In most cases, an application’s minimum requirements set an extremely low standard, as the software vendors begrudgingly must address the least common denominator of the installed base. We don’t recommend you follow these guidelines, but it’s worth making a note of the minimum graphics, system memory and CPU requirements. On the other hand, it’s highly likely that any new workstation on the market today will meet or exceed these numbers.
Certified Hardware
More interesting is the list of recommended or certified hardware. For SolidWorks, Dassault Systèmes (as of this writing) specifies a minimum of 1 GB RAM, but suggests 6 GB. Well, if you go with 1 GB, you’ll be sorry — even 6 GB isn’t necessarily the best choice, depending on your budget, and especially given the incredible amount of gigabytes/dollar that can be had today.
Similarly, Autodesk isn’t going to stop you from running a PC gamer graphics card, but the company will tell you which cards are optimized for performance and built for reliability when it comes to supporting AutoCAD or Autodesk Inventor.
Increasingly, the only CAD-certified graphics cards are professional-brand NVIDIA Quadro and AMD FirePro. That’s because software developers have consistently seen the fewest bugs and problems with cards that, like the system overall, have been exhaustively tested and tuned for professional workstation applications. In fact, the major CAD software developers will help you address issues related to running a Quadro or FirePro card, but they dedicate no support cycles to fixing bugs on consumer-class hardware.
Optimizing Your Revit Workstation for Point Clouds
Reality capture is a boom business for the building industry. With roughly 5 million existing commercial buildings in the United States alone, it’s easy to understand why. Laser-scanner-based reality capture is the dominant methodology used today to accurately capture the 3D state of an existing building. However, the typical laser-scan-based point cloud is in the hundreds of millions of 3D points, sometimes even going into the billions of points. With this additional data overhead on top of an already dense Building Information Model, it’s important to optimize your workstation hardware to deliver a productive user experience.
Finding the Bottleneck
Under the hood, Autodesk Revit utilizes the PCG point cloud engine to rapidly access the 3D points contained in point cloud and retrieve points to be displayed in the current Revit View. Since the typical point cloud dataset is so large, a workstation’s RAM is insufficient to be used as the means for access by the PCG engine in Revit. Instead, the disk drive is used for access, while a small amount of System RAM and Video RAM is used for the current Revit View. Thus, the hard drive is commonly the limiting factor for point cloud performance, rather than system RAM, CPU, or GPU.
Learn the Options
With data access a common limiting factor to the performance of the Revit point cloud experience, let’s discuss the options available to deliver the best experience. There are two primary types that are found today: spinning platter and solid-state drives.
- Spinning platter drives are the traditional hard drive technology, and are found in most computers today, as they deliver the best balance of storage capacity, read/write access speed, and cost.
- Solid-state drives (SSDs) are relatively new technology, contain no moving parts, and are generally much faster at reading and writing data than typical spinning platter drives.
In a structured comparison completed by the Revit product team, we found the following results when comparing typical versions of these Disk Drive types:
Reap the Benefits
Based upon this investigation, we would highly recommend that those looking to optimize their Revit workstations for point cloud use install an SSD for at least the local storage of the point cloud data. While you will also achieve additional benefits from running the entire OS on your SSD, a significant performance boost can be achieved through the retrofit of a ~$200 SSD to an existing workstation.
Author: Kyle Bernhardt, Product Line Manager, Autodesk Building Design Suite
How Much RAM Should You Buy for a CAD Workstation?
Memory size and speed, or RAM, can significantly impact performance, and depending on the application, could influence throughput more than anything else in your CAD workstation. Usually there’s a sweet spot. To find it, start with the minimum recommendation for your primary software, then get a feel for how much more memory you’ll get with incremental spending.
Performance versus Budget
To achieve solid performance within a reasonable budget, that sweet spot today is likely between 6 GB and 16 GB of DDR3 1333-MHz RAM. DDR3 is third generation, dual-data rate memory technology, with Intel’s current platforms centered on 1333-MHz clock frequency — and it’s really your best memory option these days.
DIMM Slots
Also pay attention to how many of your system’s dual inline memory module (DIMM) slots are taken up by the system memory. This should be clear from the system specs and from the system configurator when purchasing a system online. For example, 4 GB might be specified as “1333 MHz, DDR3 SDRAM, ECC (4 DIMMs),” meaning that four slots are occupied (out of the total number of slots specified in the model’s spec page or datasheet). Ideally, you’ll want to leave some DIMM slots empty so you can give your system a mid-life memory upgrade if needed. Depending on the density you’ve chosen, leaving empty slots often involves no additional cost.
Error Correcting Code
And what of Error Correcting Code (ECC), an upgrade that typically allows single-bit memory errors to be detected and corrected? New Xeon processors offer integrated ECC, but with other processors it’s an added expense. For most CAD applications, ECC is certainly valuable but not essential. If the added cost is modest and doesn’t sacrifice performance — sometimes the DDR clock frequency must drop to accommodate ECC — go for it.
How Much Should You Spend on a New CAD Workstation? Part 2: Mid-Range and High-End Systems
This series focuses on helping our readers understand what CAD workstations cost and how much they are going to have to spend to find a machine that meets their CAD production needs. The first part focused on entry-level systems. This post will discuss mid-range ($2,500 to $7,000) and high-end (more than $7,000) systems.
Mid-Range and High-End
Stepping up to the mid-range and high-end, you’ll typically find dual-socket Intel Xeon processors along with full tower enclosures to handle more slots and drive bays. Spring for a dual-socket system and you’ll get twice as many CPU cores, twice as much memory bandwidth, and twice the memory capacity.
Some OEMs are going to great lengths to show off the enhanced speed of processors and increased capacity of both graphics cards (for multi-monitor or high-performance computing support) and larger storage capabilities. For example, BOXX’s top-end 4800 and 8500 series workstations feature overclocked CPU performance that provides a 25% higher frequency rate — that is, an Intel 2600k (Sandy Bridge) processor running at 4.5 GHz instead of 3.4 GHz. These workstations also provide support for as many as eight drive bays and an incredible seven PCI Express slots, allowing users to populate 18 TB of total storage and house seven single-width or four dualslot graphics cards.
But there’s more to be had at the upper end of the market, as vendors are taking a page from Apple’s book and investing an impressive amount of time and money to engineer hardware aesthetics and ergonomics, resulting in advances such as tool-less and (almost) cable-less designs; carefully designed air flow; and custom, workstation-specific, high-efficiency power supplies.
Start with Your Base Requirements
So do you really need a mid-range to high-end workstation? Will an entry-level CAD workstation do? The place to start is the base requirements for your CAD software of choice, then plan a system purchase accordingly. Note that this information makes a good starting point for configuring your workstation. We consider that the baseline, and you probably want some room to grow for software upgrades.
Also if you are doing any 3D modeling, look for faster and more capable processors, more RAM, more available hard disk space in addition to free space required for installation, and a graphics display adapter capable of at least 1,280 x 1,024 resolution in true color. The graphics card needs to have 128MB or more memory, support for Pixel Shader 3.0 or greater, and Microsoft Direct3D capabilities. (Again, consider these a starting point.)
The Best Hardware Configuration for SolidWorks CAD Software
Optimizing hardware for SolidWorks is essential for getting the most out of this heavy-hitting CAD application, as we’ve discussed on CADspeed previously. So we were thrilled when the SolidWorks forum addressed this very issue recently on their forums.
The key to getting the most out of SolidWorks, or any CAD application for that matter, is ensuring your hardware can handle the workload. Remember that your situation is unique. In simple terms, two users using the same software on the same system may have very different perspectives on their workload efficiency if one is using 3D rendering and the other is not. Consider your needs first and foremost.
On the flip side, if you know you need new hardware, simply buying the most expensive machine may not pay off in the long run either. Think in terms of your productivity while shopping for a new workstation to get the most for your budget, hopefully with a little room to grow for those inevitable upgrades.
That said, here’s a summary of the recommendations straight from SolidWorks themselves.
RAM (Random-Access Memory)
The amount of RAM you need depends less on SolidWorks and more on the number of applications you run at the same time, plus the size and complexity of your SolidWorks parts, assemblies and drawings. SolidWorks recommends you have enough RAM to work with your common applications (i.e., Microsoft Office, email, etc.) and load your SolidWorks documents at the same time.
The recommended RAM for the current SolidWorks versions is 6GB. That should be your starting point. For more information on how much RAM you need, here’s a great resource on the SolidWorks forums.
CPU
Processor speed is another key factor when selecting the right hardware for you. It’s hard to sort through all the different options though, so we recommend testing a system with your actual models. SolidWorks also offers a helpful Performance Test, which offers a standardized test for determining performance of your major system components (i.e., CPU, I/O, video) when working with SolidWorks datasets. Even better, when you complete the SolidWorks Performance Test, you have an option to share your score with others. This gives you, and other community members, a sense of where a system stands relative to others. Nice!
Note that SolidWorks and some of its add-ons (PhotoView 360) have some multithreaded capabilities, so the application can use the second processor or multiple cores. But SolidWorks says that rebuilds are single threaded and therefore rebuilds generally will not be faster with multiple CPUs or cores.
Disk
The size of your hard drive or solid-state drive should be based on the disk space you need. Take a look at all your system’s components: operating system, applications and documents. If you work primarily on a network, your needs may be different than those who primarily use their local drive. Don’t forget to develop a back-up plan for your data, if you don’t already have one. (You do have one, right?)
Graphics Cards
The very nature of CAD software requires a good workstation-level graphics card and driver. You are probably going to need at least a mid-range card, if not a high-end card, depending on the type of CAD work you do. For graphics cards, we recommend starting with the SolidWorks Certified Graphics Cards and System, because SolidWorks has done the testing for you.
Can’t get enough about hardware configurations for SolidWorks? Check out this great post from SolidWorks on their forums. Or learn more about the minimum requirements for SolidWorks.
Hardware Considerations for Maximizing the Performance of Vectorworks 2012 Software
In September we announced the release of the 2012 version of Vectorworks® software. The release contains more than 100 performance and usability improvements to help users save time and increase their productivity. If you’re thinking about trying one of the Vectorworks design series programs, or if you’re ready for an upgrade, you may have some questions about hardware selection. Here is a brief overview to get you started.
Core Considerations
The main benefits provided by hardware to Vectorworks 2012 come from the number of CPU cores available, as well as their individual clock speed.
If you use Renderworks, the Vectorworks rendering application, you’ll want a CPU with multiple cores because when rendering in Renderworks® modes, Vectorworks 2012 software is capable of utilizing dozens of cores. These cores can all be accessed at the same time, which drastically decreases the rendering time over older single-core machines.
Thoughts on Memory
Memory (RAM) is less important to Vectorworks software, with a good base being 4GB to allow plenty of free RAM for the operating system, as well as for the Vectorworks program and a few other applications to run in the background.
Vectorworks is normally not very memory intensive, so you would not notice the difference between two machines with identical processors and video cards. For example, if one had 4GB and one had 12GB, your experience with the program would likely be similar. However, there are instances where more memory can be helpful to you. For example, if you run multiple apps on your machine, such as CINEMA 4D or Scia Engineer, extra RAM will be useful to improving overall performance.
Drive Decisions
The other aspects to consider when choosing hardware for the Vectorworks 2012 program are video cards (which are covered in detail here), and the drive the machine will use. Vectorworks would receive a mild benefit to open/close times and speed increases when saving files if you were to use an SSD (Solid State Drive) as compared to a regular 7200RPM HDD (Hard Disk Drive). However, you would not notice significant drafting speed or rendering speed increases if you used a faster drive.
To learn more about how to maximize your Vectorworks 2012 software experience, please see our list of Vectorworks system recommendations.
Author: Jim Wilson, Technical Support Specialist, Nemetschek Vectorworks, Inc.