Archive
Getting the Best Desktop Virtualization Experience for CAD
Desktop virtualization technology has advanced greatly in recent years and is beginning to offer the robust performance, superior graphics, and quick response times required by users of CAD and other compute-intensive applications. On top of those benefits, virtualization brings other benefits to the CAD user. For instance, virtualization allows remote workers to do their jobs anywhere while maintaining a high level of security for the data stored back on site. It is also perfect for remote file viewing and collaboration, as the speed issue isn’t as bothersome as it is during the actual work process. With the right tools, you can create a virtualized CAD experience that is as good as a desktop CAD workstation. Here’s how.
Invest in the Right Hardware
The first component of a solid virtualization experience is the server that houses the information and processing power utilized by the virtual desktops. RAM is the single most important factor, because without adequate RAM, the other components of the virtualization experience won’t perform as well as possible. And it’s cheaper in the long run to fork out generously for ample RAM to begin with than to try to tack on more later, so invest in as much as the budget allows.
Redundant racks are also a good investment. In order to support remote workers through virtualization, it’s crucial to have backup servers in place in case one of the servers goes down. Though modern servers are more reliable than those made several years ago, hardware malfunction is still a part of life.
Invest in a Good Connection
Network connection is like a bridge. You can’t get to New York from Jersey if the George Washington Bridge is out — and your virtualized desktop can’t perform beautifully if it can’t cross your network connection with some zing. 10G-PON is ideal, but costly. Invest in the best quality connectivity you can afford so that your virtualized machines can get the most good out of all that robust infrastructure you built back onsite.
Choose the Right Uses for Desktop Virtualization
With the right equipment, remote workers should get as good an experience as workers using desktop CAD workstations. But if budget limitations reduce the amount of RAM you can purchase or prohibit the use of a speedy network connection, virtualized machines can still offer benefits, such as remote viewing and long-distance collaboration on projects.
For more information about CAD software and hardware technologies, visit Cadalyst.com.
Do You Really Need ECC Memory for CAD Workstation Computing?
I recently read an article by an Intel product manager on the need for “ECC” (error correction code) memory in CAD workstations. From the article: “Corrupted data can impact every aspect of your business, and worse yet you may not even realize your data has become corrupted. Error-correcting code (ECC) memory detects and corrects the more common kinds of internal data corruption.”
For some reason this triggered my memory of the sudden-acceleration Toyota Prius incident from 2010. The popular press latched on to the idea that cosmic rays were screwing with the electronics in the Prius. While theoretically possible, the probabilities of this were astronomically low. It did however, make for a great story and the FUD (fear uncertainty doubt) caused Prius prices to temporarily plummet and sales come to a crawl.
Back to ECC memory and CAD systems. Is there really a need for ECC memory in CAD or is it just FUD marketing to upsell hardware and make products sound more valuable than they really are? I decided to do a little research.
Question:
Who needs ECC memory and what is its role in professional & CAD workstation computing?
Answer:
Naturally occurring cosmic rays can and do cause problems for computers down here on planet Earth. Certain types of subatomic particles (primarily neutrons) can pierce through buildings and computer components and physically alter the electrical state of electronic components. When one of these particles interacts with a block of system memory, GPU memory or other binary electronics inside your computer, it can cause a single bit to spontaneously flip to the opposite state. This can lead to an instantaneous error and the potential for incorrect application output and sometimes, even a total system crash. However, the theoretical chances of a single bit error caused by a cosmic ray strike on your PC or workstation’s memory is fairly rare — only about once every 9 years per 8GB of RAM, according to recent data.
ECC technology — used as both system RAM, and in devices such as high-end GPUs — can reliably detect and correct these errors, reducing the odds of memory corruption due to “single bit errors” down to about once every 45 years for 8GB of RAM. Of course, just like everything else in life there are always tradeoffs. ECC memory is typically up to 10% slower and significantly more expensive than standard non-ECC memory.
Because the odds of a cosmic ray strike increase in direct proportion to the physical amount of memory (and related components) inside a computer, this is a real concern for large scale, clustered supercomputing and other environments where computing tasks often include high-precision calculation sets that can take days or even weeks to complete. In the case of supercomputer clusters, which often contain hundreds or even thousands of connected computer nodes and terabytes of memory, the odds of cosmic ray strikes on the system are much more likely — and much more costly. Restarting a week-long calculation on a supercomputer can cost a facility many tens of thousands of dollars in lost time, electricity and manpower —not to mention lost productivity.
But for even very beefy PC CAD workstation configurations with loads of RAM on board, you are probably not at imminent risk from problems caused by cosmic ray strikes and the resulting single bit errors. Over the course of your work, you are much more likely to endure system crashes or application hangs dues to failing components, power fluctuations and software bugs than due to cosmic ray strikes. Additionally, many applications in the desktop design and engineering space can actually endure a single bit error without negatively impacting the computing process or product. For example, if the color or brightness of a single pixel on a display monitor is changed due to this type of memory corruption on the system’s GPU, nobody will ever see or notice it. There are many such examples of this type of error not really impacting ones everyday work.
This said, many leading technology manufacturers are enabling their high-end products with ECC memory for compute-heavy (especially clustered supercomputing) applications where the benefits of using error correcting memory outweigh any comparative speed/cost drawbacks. AMD for example, has engineered their new AMD FirePro W9000 and FirePro S9000 ultra-high-end GPU cards to include ECC memory which can selectively be enabled by the end user and used for many advanced computing purposes where rock-solid stability and protection from space rays is crucial.
Sources:
- http://www.tezzaron.com/about/papers/soft_errors_1_1_secure.pdf
- http://en.wikipedia.org/wiki/ECC_memory
- http://www.smartm.com/files/salesLiterature/dram/smart_whitepaper_sbe.pdf
Author: Tony DeYoung
Recommended Hardware for CAD, Part 1: AutoCAD, Inventor, Revit and Other Autodesk Applications
Here at CADspeed, we get a lot of questions about buying new hardware for CAD applications. While the answer to, “What CAD hardware should I buy?” varies widely based on the person asking the question, it always starts in the same place: with the requirements of the CAD software you plan to use.
Yet a list of minimum requirements can be, well, only minimally helpful in the quest for the right CAD workstation. Most CAD users need hardware that will not just meet the minimum specifications, but enable them to maximize their productivity.
CAD software developers know this, and they have a vested interest in making sure you get the bang for your software buck. So this series will explore recommended hardware for a variety of common CAD applications from the makers of the applications themselves.
Autodesk
We start this series with Autodesk, creator of 3D design, engineering and entertainment software that includes some of the most commonly used applications in the industry. Autodesk has developed a web site to help users find certified or recommended software for Autodesk applications.
The truth is, however, many CAD users don’t use just one CAD software application. It’s very common to use both AutoCAD and Revit on the same system, for example. The intriguing part of the Autodesk hardware site is you can select multiple products and find the common driver and hardware configurations that will work best for your system.
Certified vs. Recommended
On the Autodesk website, you’ll see two terms that you need to understand: certified and recommended. “Certified” hardware meets Autodesk’s minimum hardware requirements for the applicable Autodesk software product. At least one configuration (e.g., GPU + driver, or CPU + GPU + RAM + HD + BIOS) has passed tests designed to verify that the hardware supports the product’s features.
“Recommended” hardware meets Autodesk’s recommended system requirements for the applicable Autodesk product. At least one configuration has passed tests designed to verify that the hardware supports the product’s features.
A “Recommended” or “Certified” rating is based on the test results for a graphics card and driver or a complete system. Clicking the link for a card or system will reveal the results of each individual component tests.
Icon | Rating Description* |
|
Recommended – Meets Autodesk’s recommended system requirements and has passed all Autodesk certification tests. |
|
Certified – Meets Autodesk’s minimum system requirements and has passed all Autodesk certification tests. |
Icon | Component Test Results* |
|
Passed – When tested with this configuration, the hardware passed testing. |
|
Passed with issues – When tested with this configuration, the hardware has some minor problems or features that are not supported. |
|
Failed – When tested with this configuration, the hardware does not adequately support the product’s features. |
|
No Results – This configuration has not been tested by the associated product. |
* Test results are valid only for the tested combination of hardware and driver. Certified or Recommended status does not guarantee that the graphics hardware will operate acceptably with other drivers or configurations. Driver-specific test results are available for some hardware and can be found by clicking on a product name in the Hardware List.
Other Terms to Understand
Before using the Autodesk Certified Hardware site, you should understand a few other common terms to make sure you are getting the right results.
Graphics:
- Workstation—Graphics hardware designated by the manufacturer as workstation-grade, typically meaning it is designed to work with 3D CAD applications
- Consumer—Graphics hardware designated by the manufacturer for desktop or gaming level use, typically meaning it is not designed or recommended for use with 3D CAD applications
- Mobile—Integrated hardware normally found in laptops.
Systems:
- Workstation Desktop—Desktop system designated by the manufacturer as workstation-grade, typically meaning it is designed to work with 3D CAD applications
- Workstation Laptop—Laptop designated by the manufacturer as workstation-grade, typically meaning it is designed to work with 3D CAD applications
- Consumer Desktop—Desktop system designated by the manufacturer for desktop or gaming level use, typically meaning it is not designed or recommended for use with 3D CAD applications
- Consumer Laptop—Laptop designated by the manufacturer for desktop or gaming level use, typically meaning it is not designed or recommended for use with 3D CAD applications.
- Tablet—Touch-screen device with integrated components.
The Hardware List page contains only the hardware products that Autodesk has tested for use with certain Autodesk applications. Autodesk tests a variety of hardware, but focuses primarily on hardware the manufacturer has indicated is workstation-grade and designed to work with 3D CAD applications.
Unless otherwise noted, Autodesk hardware certification tests are run on systems containing a single video card with a single monitor attached. Autodesk does not currently run certification tests on systems with multiple graphics cards installed or multiple monitors.
Author: CADspeed Editors
Buying a New CAD Workstation? Know Your Software System Requirements
Where do you begin your quest for the right workstation? This particular hardware search should start with your software.
Let’s be real: Nobody relies on just one application over the course of a day. We’re all bouncing between disparate tasks and windows. But for the majority of CAD professionals, there is one application — or maybe a couple — that consumes the bulk of your hours at the desk. What’s the app that dominates your day? Got it? Now hit the web site of the software developer and find the minimum and recommended system requirements for your killer app. AutoCAD users can find this information at http://usa.autodesk.com/autocad/system-requirements.
Minimum is the Starting Point Only
In most cases, an application’s minimum requirements set an extremely low standard, as the software vendors begrudgingly must address the least common denominator of the installed base. We don’t recommend you follow these guidelines, but it’s worth making a note of the minimum graphics, system memory and CPU requirements. On the other hand, it’s highly likely that any new workstation on the market today will meet or exceed these numbers.
Certified Hardware
More interesting is the list of recommended or certified hardware. For SolidWorks, Dassault Systèmes (as of this writing) specifies a minimum of 1 GB RAM, but suggests 6 GB. Well, if you go with 1 GB, you’ll be sorry — even 6 GB isn’t necessarily the best choice, depending on your budget, and especially given the incredible amount of gigabytes/dollar that can be had today.
Similarly, Autodesk isn’t going to stop you from running a PC gamer graphics card, but the company will tell you which cards are optimized for performance and built for reliability when it comes to supporting AutoCAD or Autodesk Inventor.
Increasingly, the only CAD-certified graphics cards are professional-brand NVIDIA Quadro and AMD FirePro. That’s because software developers have consistently seen the fewest bugs and problems with cards that, like the system overall, have been exhaustively tested and tuned for professional workstation applications. In fact, the major CAD software developers will help you address issues related to running a Quadro or FirePro card, but they dedicate no support cycles to fixing bugs on consumer-class hardware.
Optimizing Your Revit Workstation for Point Clouds
Reality capture is a boom business for the building industry. With roughly 5 million existing commercial buildings in the United States alone, it’s easy to understand why. Laser-scanner-based reality capture is the dominant methodology used today to accurately capture the 3D state of an existing building. However, the typical laser-scan-based point cloud is in the hundreds of millions of 3D points, sometimes even going into the billions of points. With this additional data overhead on top of an already dense Building Information Model, it’s important to optimize your workstation hardware to deliver a productive user experience.
Finding the Bottleneck
Under the hood, Autodesk Revit utilizes the PCG point cloud engine to rapidly access the 3D points contained in point cloud and retrieve points to be displayed in the current Revit View. Since the typical point cloud dataset is so large, a workstation’s RAM is insufficient to be used as the means for access by the PCG engine in Revit. Instead, the disk drive is used for access, while a small amount of System RAM and Video RAM is used for the current Revit View. Thus, the hard drive is commonly the limiting factor for point cloud performance, rather than system RAM, CPU, or GPU.
Learn the Options
With data access a common limiting factor to the performance of the Revit point cloud experience, let’s discuss the options available to deliver the best experience. There are two primary types that are found today: spinning platter and solid-state drives.
- Spinning platter drives are the traditional hard drive technology, and are found in most computers today, as they deliver the best balance of storage capacity, read/write access speed, and cost.
- Solid-state drives (SSDs) are relatively new technology, contain no moving parts, and are generally much faster at reading and writing data than typical spinning platter drives.
In a structured comparison completed by the Revit product team, we found the following results when comparing typical versions of these Disk Drive types:
Reap the Benefits
Based upon this investigation, we would highly recommend that those looking to optimize their Revit workstations for point cloud use install an SSD for at least the local storage of the point cloud data. While you will also achieve additional benefits from running the entire OS on your SSD, a significant performance boost can be achieved through the retrofit of a ~$200 SSD to an existing workstation.
Author: Kyle Bernhardt, Product Line Manager, Autodesk Building Design Suite
How Much RAM Should You Buy for a CAD Workstation?
Memory size and speed, or RAM, can significantly impact performance, and depending on the application, could influence throughput more than anything else in your CAD workstation. Usually there’s a sweet spot. To find it, start with the minimum recommendation for your primary software, then get a feel for how much more memory you’ll get with incremental spending.
Performance versus Budget
To achieve solid performance within a reasonable budget, that sweet spot today is likely between 6 GB and 16 GB of DDR3 1333-MHz RAM. DDR3 is third generation, dual-data rate memory technology, with Intel’s current platforms centered on 1333-MHz clock frequency — and it’s really your best memory option these days.
DIMM Slots
Also pay attention to how many of your system’s dual inline memory module (DIMM) slots are taken up by the system memory. This should be clear from the system specs and from the system configurator when purchasing a system online. For example, 4 GB might be specified as “1333 MHz, DDR3 SDRAM, ECC (4 DIMMs),” meaning that four slots are occupied (out of the total number of slots specified in the model’s spec page or datasheet). Ideally, you’ll want to leave some DIMM slots empty so you can give your system a mid-life memory upgrade if needed. Depending on the density you’ve chosen, leaving empty slots often involves no additional cost.
Error Correcting Code
And what of Error Correcting Code (ECC), an upgrade that typically allows single-bit memory errors to be detected and corrected? New Xeon processors offer integrated ECC, but with other processors it’s an added expense. For most CAD applications, ECC is certainly valuable but not essential. If the added cost is modest and doesn’t sacrifice performance — sometimes the DDR clock frequency must drop to accommodate ECC — go for it.
Q&A with CADspeed: Remote Graphics versus Virtual Desktop
Editor’s Note: Q&A with CADspeed answers CAD hardware questions from our readers. This question was a response to Tony DeYoung’s recent blog series about remote graphics.
Question:
Could you explain the difference between remote graphics and hosting a virtual desktop by running a VM session from a server with MS server 2008 and RDP or Citrix? It seems exactly the same. This also seems similar to the way Onlive gaming works — just the graphics are being sent. Another question you might be able to answer: can the RAM & graphics card be dynamically shared or are they allotted and dedicated to the VM session?
Answer:
The quick answer is the FirePro remote graphics solution can be used in either a 1-1 remoted solution (e.g., one remote workstation running AutoCAD with a FirePro card providing graphics to one user) or a 1-N multiple VMs remoted solution (e.g., one server workstation running two copies of AutoCAD each in a VM, with two FirePro cards providing high performance 3D graphics to two users).
The card does not virtualize it’s own 3D driver, so it can’t dynamically allocate some computing to one user and leftover computing ability to another (which is what Microsoft does with RDP for non-3D graphics).
The real advantage of remote graphics is that you can have one workstation “server” rather than four individual workstations (or workstation laptops). And, of course, the security of having all data remote.
Have a question about your CAD hardware? We’ll try to find the answer. Contact CADspeed.
Author: Tony DeYoung