Archive

Archive for the ‘Processors’ Category

How Much Should You Spend on a New CAD Workstation? Part 2: Mid-Range and High-End Systems

November 22, 2011 2 comments
Price Ranges for CAD Workstations

Price Ranges for CAD Workstations

This series focuses on helping our readers understand what CAD workstations cost and how much they are going to have to spend to find a machine that meets their CAD production needs. The first part focused on entry-level systems. This post will discuss mid-range ($2,500 to $7,000) and high-end (more than $7,000) systems.

Mid-Range and High-End

Stepping up to the mid-range and high-end, you’ll typically find dual-socket Intel Xeon processors along with full tower enclosures to handle more slots and drive bays. Spring for a dual-socket system and you’ll get twice as many CPU cores, twice as much memory bandwidth, and twice the memory capacity.

Some OEMs are going to great lengths to show off the enhanced speed of processors and increased capacity of both graphics cards (for multi-monitor or high-performance computing support) and larger storage capabilities. For example, BOXX’s top-end 4800 and 8500 series workstations feature overclocked CPU performance that provides a 25% higher frequency rate — that is, an Intel 2600k (Sandy Bridge) processor running at 4.5 GHz instead of 3.4 GHz. These workstations also provide support for as many as eight drive bays and an incredible seven PCI Express slots, allowing users to populate 18 TB of total storage and house seven single-width or four dualslot graphics cards.

But there’s more to be had at the upper end of the market, as vendors are taking a page from Apple’s book and investing an impressive amount of time and money to engineer hardware aesthetics and ergonomics, resulting in advances such as tool-less and (almost) cable-less designs; carefully designed air flow; and custom, workstation-specific, high-efficiency power supplies.

Start with Your Base Requirements

So do you really need a mid-range to high-end workstation? Will an entry-level CAD workstation do? The place to start is the base requirements for your CAD software of choice, then plan a system purchase accordingly. Note that this information makes a good starting point for configuring your workstation. We consider that the baseline, and you probably want some room to grow for software upgrades.

Also if you are doing any 3D modeling, look for faster and more capable processors, more RAM, more available hard disk space in addition to free space required for installation, and a graphics display adapter capable of at least 1,280 x 1,024 resolution in true color. The graphics card needs to have 128MB or more memory, support for Pixel Shader 3.0 or greater, and Microsoft Direct3D capabilities. (Again, consider these a starting point.)

Author: Alex Herrera

The Difference Between a Workstation and Consumer-Grade PC for CAD

November 15, 2011 1 comment

Dell T5500 CAD WorkstationWhat’s the difference between a workstation or consumer-grade PC, and why should you care? Well, ten to fifteen years ago, no one had trouble distinguishing between one and the other. Workstations were very expensive, high-performance, proprietary, 3D-equipped RISC or UNIX boxes. PCs were lower-cost, lower-quality toys that couldn’t handle 3D.

But all that has changed.

Economy of Scale

Spurred on by technological advances funded by the huge economies of scale in the broader PC markets, workstation OEMs such as HP, Sun and SGI got out of the component-making business, leaving that to independent hardware vendors (IHVs) such as Intel, AMD and NVIDIA. As a result, workstations today share technology with PCs and enjoy the economy-of-scale benefits that come with mass-market production.

That raises the question: If the guts of the PC and the guts of the workstation are the same, why pay a premium for the latter? Interestingly, those exorbitant workstation premiums of the past are long gone. Yes, you can still spend your entire system budget on a single high-end graphics card, but today’s entry-level system — which more than 80% of desktop workstation buyers choose (according to Jon Peddie Research) — can sell for only about $100 more than a similarly configured PC.

Independent Software Vendor Certification

Although you don’t have to pay much of a premium for a workstation, there are compelling reasons to do so. There’s a whole laundry list of benefits to be had, but at a minimum you’ll get independent software vendor (ISV) certification, meaning your CAD software developer has tested the hardware and vouches for its reliability, and in most cases, you’ll get a professional graphics card as well.

“It is important that CAD users select an ISV-certified workstation to help ensure that the demanding applications they depend on run smoothly, right out of the box,” said Greg Weir, director of Precision Workstation Product and ISV Marketing at Dell. “[ISV-certified hardware] comes with supported drivers to help eliminate issues and increase performance after the point of  sale. This intense level of testing and development between an OEM and the ISV only comes with workstations.”

Not All Graphics Cards are Created Equal

In contrast to the graphics cards sought by gamers, professional graphics processing units (GPUs) enable special rendering modes unique to CAD in general, and often to your specific application as well. Drivers from AMD and NVIDIA optimize the quality and performance for common tasks such as rendering AutoCAD Smooth lines and Gooch shaders. Try to render the same visuals on  noncertified, gamer-class hardware, and AutoCAD will turn off hardware acceleration, dropping your rendering to a relative crawl.

Many such entry-level models incorporate integrated graphics processing — that is, no discrete graphics card. Although in our opinion this option is not adequate for most CAD applications, it does offer improved graphics performance compared with a standard PC. According to Wes Shimanek, workstation product manager at Intel, “If you have been buying a PC to do CAD, you’ll want to rethink that investment and consider [a workstation]. This system offers you better performance for similar dollars to the PC you have been using.”

Author: Alex Herrera

The Best Hardware Configuration for SolidWorks CAD Software

November 10, 2011 3 comments

SolidWorksOptimizing hardware for SolidWorks is essential for getting the most out of this heavy-hitting CAD application, as we’ve discussed on CADspeed previously. So we were thrilled when the SolidWorks forum addressed this very issue recently on their forums.

The key to getting the most out of SolidWorks, or any CAD application for that matter, is ensuring your hardware can handle the workload. Remember that your situation is unique. In simple terms, two users using the same software on the same system may have very different perspectives on their workload efficiency if one is using 3D rendering and the other is not. Consider your needs first and foremost.

On the flip side, if you know you need new hardware, simply buying the most expensive machine may not pay off in the long run either. Think in terms of your productivity while shopping for a new workstation to get the most for your budget, hopefully with a little room to grow for those inevitable upgrades.

That said, here’s a summary of the recommendations straight from SolidWorks themselves.

RAM (Random-Access Memory)

The amount of RAM you need depends less on SolidWorks and more on the number of applications you run at the same time, plus the size and complexity of your SolidWorks parts, assemblies and drawings. SolidWorks recommends you have enough RAM to work with your common applications (i.e., Microsoft Office, email, etc.) and load your SolidWorks documents at the same time.

The recommended RAM for the current SolidWorks versions is 6GB. That should be your starting point. For more information on how much RAM you need, here’s a great resource on the SolidWorks forums.

CPU

Processor speed is another key factor when selecting the right hardware for you. It’s hard to sort through all the different options though, so we recommend testing a system with your actual models. SolidWorks also offers a helpful Performance Test, which offers a standardized test for determining performance of your major system components (i.e., CPU, I/O, video) when working with SolidWorks datasets. Even better, when you complete the SolidWorks Performance Test, you have an option to share your score with others. This gives you, and other community members, a sense of where a system stands relative to others. Nice!

Note that SolidWorks and some of its add-ons (PhotoView 360) have some multithreaded capabilities, so the application can use the second processor or multiple cores. But SolidWorks says that rebuilds are single threaded and therefore rebuilds generally will not be faster with multiple CPUs or cores.

Disk

The size of your hard drive or solid-state drive should be based on the disk space you need. Take a look at all your system’s components: operating system, applications and documents. If you work primarily on a network, your needs may be different than those who primarily use their local drive. Don’t forget to develop a back-up plan for your data, if you don’t already have one. (You do have one, right?)

Graphics Cards

The very nature of CAD software requires a good workstation-level graphics card and driver. You are probably going to need at least a mid-range card, if not a high-end card, depending on the type of CAD work you do. For graphics cards, we recommend starting with the SolidWorks Certified Graphics Cards and System, because SolidWorks has done the testing for you.

Can’t get enough about hardware configurations for SolidWorks? Check out this great post from SolidWorks on their forums. Or learn more about the minimum requirements for SolidWorks.

Sustainability and the CAD Workstation: Heat, Noise and Power Consumption

November 3, 2011 2 comments

Sustainability and the CAD WorkstationPrice and performance generally increase as you climb the workstation ladder, and so do heat, nose and power consumption. These metrics, which were of low or no concern years ago, are top of mind today.

Heat

We’re all looking to cut costs and go greener; electricity is used by your new machine, of course, but also in cooling the office space that the machine heats up. Remember the heat output of a workstation impacts the company’s overall utility bills. If  you multiple that effect by the number of workstations in the office, it can have a measurable influence.

Noise

Although it might be easy to dismiss the concern over noise, we all know that nothing puts a damper on your productivity like the incessant whir of all those fans moving air through that desktop chassis. So how do you quantify the noise? Big buyers are actually measuring decibels now, before even checking out price tags and performance specs.

But for the rest of us without access to acoustics chambers, the basic premise is straightforward: the more watts the machine consumes, the higher your electric bill, the more heat is produced, and the greater the air flow necessary to cool it, meaning more noise.

Power Consumption

Where’s the greatest power consumption? For anyone who’s peered inside a chassis and seen the big heat sinks and fan sinks (with an active fan on top of the chip), you know the CPUs and GPUs are notorious problem areas. Über-clocked CPUs and GPUs consuming more than 150 watts mean more fans and more noise.

Testing a Workstation

Now every OEM is paying attention to more effective chassis design to optimize air flow and cooling, and these efforts are noticeably reducing noise. However, system noise is difficult to ascertain unless you can try out the unit yourself, so if unexpectedly high noise or power consumption is a major concern, see if you can buy at a brick-and-mortar store to more easily test it out and return, if necessary.

Otherwise, just keep in mind that choosing the fastest CPUs and GPUs — and opting for a dual processor for either — will drive up power consumption quickly, and chances are more noise will follow.

Author: Alex Herrera

Hardware Considerations for Maximizing the Performance of Vectorworks 2012 Software

October 27, 2011 3 comments

Vectorworks 2012In September we announced the release of the 2012 version of Vectorworks® software. The release contains more than 100 performance and usability improvements to help users save time and increase their productivity. If you’re thinking about trying one of the Vectorworks design series programs, or if you’re ready for an upgrade, you may have some questions about hardware selection. Here is a brief overview to get you started.

Core Considerations

The main benefits provided by hardware to Vectorworks 2012 come from the number of CPU cores available, as well as their individual clock speed.

If you use Renderworks, the Vectorworks rendering application, you’ll want a CPU with multiple cores because when rendering in Renderworks® modes, Vectorworks 2012 software is capable of utilizing dozens of cores. These cores can all be accessed at the same time, which drastically decreases the rendering time over older single-core machines.

Thoughts on Memory

Memory (RAM) is less important to Vectorworks software, with a good base being 4GB to allow plenty of free RAM for the operating system, as well as for the Vectorworks program and a few other applications to run in the background.

Vectorworks is normally not very memory intensive, so you would not notice the difference between two machines with identical processors and video cards. For example, if one had 4GB and one had 12GB, your experience with the program would likely be similar. However, there are instances where more memory can be helpful to you. For example, if you run multiple apps on your machine, such as CINEMA 4D or Scia Engineer, extra RAM will be useful to improving overall performance.

Drive Decisions

The other aspects to consider when choosing hardware for the Vectorworks 2012 program are video cards (which are covered in detail here), and the drive the machine will use. Vectorworks would receive a mild benefit to open/close times and speed increases when saving files if you were to use an SSD (Solid State Drive) as compared to a regular 7200RPM HDD (Hard Disk Drive). However, you would not notice significant drafting speed or rendering speed increases if you used a faster drive.

To learn more about how to maximize your Vectorworks 2012 software experience, please see our list of Vectorworks system recommendations.

Author: Jim Wilson, Technical Support Specialist, Nemetschek Vectorworks, Inc.

Speed Up Civil 3D with a 64-bit Operating System, Part 3: Selling to the Boss

September 8, 2011 1 comment

Windows 7 64-bit Operating System for Civil 3DSo far, we’ve covered the advantages of upgrading a 64-bit operating system for Civil 3D and other CAD applications as well as the benefits in non-CAD tasks also.

All of these benefits are driving the PC market to embrace 64-bit operating systems like never before. Last year the Windows Blog reported the installed was approaching 50% and NPD recently reported that over 75% of computer systems on retail shelves were being sold with some flavor of Windows 7 64-bit pre-installed. All of this makes it clear that the 32-bit OS is a thing of the past and prime for extinction soon.

The best way to future-proof that Civil 3D workstation for tomorrow is to recognize this trend and migrate to 64-bit today!

Benefits versus Costs

Since almost any new CAD system you order from a big manufacturer will come preloaded with Windows 7 64-bit, the real decision lies in updating your old systems. Costs for licenses will vary depending on your software source and your licensing relationship with Microsoft. But it is safe to assume that the change will cost a few hundred dollars to install Windows 7 64-bit on each machine.

While that may seem like a hard pill to swallow consider this: Assume a man year is over 2000 hours. Billing at an average rate of $60/hour, if your employees could improve renderings, processing, and files open/save procedures to save just one minute per hour that would equate to $2000 of billable time a year! That means your 64-bit investment would pay for itself in a single year! Now those are numbers worth taking to the boss.

If after all of this you are still set on keeping your old, tired 32-bit system, we understand. Change is scary. Drop us an email and let us know how things are back in the 1990s. You can address it to “the future of Civil 3D.” We’d love to hear from you.

Author: Curt Moreno

Speed Up Civil 3D with a 64-bit Operating System, Part 2: Non-CAD Tasks

September 7, 2011 2 comments

Windows 7 64-bit Operating System for Civil 3DWe’ve been discussing Civil 3D and other CAD applications up to this point. But the average CAD workstation has to do so much more than CAD. Well if you are running a 64-bit operating system you are going to see benefits in these non-CAD tasks also.

Thanks to the aforementioned improvements in memory and computational management, even the most boring tasks will be improved. For instance Microsoft Office Excel will be able to open massive workbook faster and easier since it no longer has to break the data into “manageable” 2GB chunks. Microsoft Project will handle huge projects with greater ease and fewer stalls/crashes when multiple sub-projects are involved. Adobe Photoshop will render and perform file open/save functions much faster. And that is just to name a few of the great things that 64-bit operating systems can do.

But if CAD is really all you are concerned with then here is the best news of all. Many modern CAD applications are available in native 64-bit versions. These newly improved releases sport better reliability, data management, and memory utilization. What does that all mean? It means you will be rocking you CAD drawings at maximum velocity!

Next, we’ll sell it to your boss.

Author: Curt Moreno

Follow

Get every new post delivered to your Inbox.

Join 42 other followers