Archive

Archive for September, 2012

Autodesk 360, Part 4: Synchronization With Autodesk 360

September 27, 2012 5 comments

In Part 3 of this series, I showed you some of the collaboration functionality of Autodesk 360. We are now going to look at how we can synchronize our documents and drawings using Autodesk 360, using a fixed location (PC on a network) and a mobile location (iPad on a remote site with Wi-Fi), like in Part 3.

Your Documents Are Ready To Go, What Happens Now?

In Part 3 of this series, I mentioned that your documents were already synced. The synchronization tools you get with Autodesk 360, either in your fixed location or your mobile location, give you great flexibility. Especially if you are mobile on a tablet such as an iPad. Any changes you make using AutoCAD WS (for example) can be synced up to Autodesk 360. Be aware, though, that you can store ANY kind of document on Autodesk 360. We are talking MS Word or Excel docs, not just drawings and models.

So like in Part 3, you’re logged in with your Autodesk ID and you have synced your existing documents from your fixed location (PC on the network) to the cloud (Autodesk 360).

Autodesk 360, logged in, with MS Word docs highlighted.

Autodesk 360, logged in, with MS Word docs highlighted.

Making And Syncing Changes In A Fixed Location

I have selected one of the Word docs I have uploaded, which are the three previous parts of this series. The selected document is “Intro to Autodesk 360.” You will notice I have control over comments (right-hand side) and I have commented “This document needs to be archived.” Currently, this document is NOT set to be shared. Public sharing is switched OFF (bottom). If sharing was on, the comments function is a great way to add “unofficial” comments on any document, drawing or otherwise, almost like you would talk to each other on social media, a bit like Windows Live Messenger, for example. It is a superb way of working in a fixed location and letting the staff on a site know what needs to be done, aiding productivity. There is also the facility to download the document, which I will discuss in a moment.

Screenshot showing download, comment and sharing functions.

Screenshot showing download, comment and sharing functions.

So, if I clicked on DOWNLOAD now, Internet Explorer (IE9 in this case) prompts me to Open or Save the document.

MS Word document waiting to be downloaded from Autodesk 360.

MS Word document waiting to be downloaded from Autodesk 360.

I am going to OPEN the document and as I have MS Office on my laptop at my fixed location, Windows will open the file for me and I can then get on working, regardless of where that document came from, which could have been a remote site on the other side of the world, again aiding productivity.

If I go back to my overall list of Autodesk 360 documents (just click on Documents at the top of the Autodesk 360 screen), and I hover over the document, you will see small icons highlighting that I have made a comment on the document.

When I click on the Actions icon (arrowed) and click on Versions on the sub-menu, Autodesk 360 give me a chronological order of the versions of the same document, allowing tracking of the document and its various versions.

Actions sub-menu showing Versions function.

Actions sub-menu showing Versions function.

The versions of the document are displayed on the browser screen as shown below:

Screenshot showing document versions.

Screenshot showing document versions.

I can upload a new version of the document, or if I click on the small clock icon, I can revert to a PREVIOUS version if required. Autodesk 360 prompts you about this if you decide to do it.

The option to revert to a PREVIOUS version of the document.

The option to revert to a PREVIOUS version of the document.

Making And Syncing Changes In A Mobile Location

So let’s look now at our mobile location. I am running Autodesk 360 and AutoCAD WS on my iPad, and I am going to change a drawing using AutoCAD WS.

Upon logging in to Autodesk 360 on my iPad, I see the recent history of the MS Word document. So, my changes have already been synced live in the cloud in Autodesk 360. This speeds up collaboration time, especially when working together as a team on project drawings where the masters are stored on Autodesk 360.

iPad screen showing live updates already synced in Autodesk 360.

iPad screen showing live updates already synced in Autodesk 360.

Using the same process as above to find a drawing this time, but using the iPad remotely on a Wi-Fi connection, I have downloaded the drawing A3 Training.dwg in to AutoCAD WS for the iPad.

A3 Training.dwg open in AutoCAD WS on the iPad.

A3 Training.dwg open in AutoCAD WS on the iPad.

If some changes are made to the drawing on AutoCAD WS REMOTELY, these changes will be synced to Autodesk 360 immediately when the drawing is saved. I have added two red circles to the drawing, as shown below.

A3 Training.dwg showing the two red circles added.

A3 Training.dwg showing the two red circles added.

After selecting Done in AutoCAD WS, the drawing is saved. I then need to select Sync in the drawing list and the new revisions to the drawing (the red circles) are then saved to that version of the drawing in Autodesk 360 as well.

Drawing list in AutoCAD WS showing drawing used and Sync button on iPad.

Drawing list in AutoCAD WS showing drawing used and Sync button on iPad.

Once the remote sync is complete (on AutoCAD WS), the fixed location can then check the changes on their Autodesk 360 back at the office.

By clicking on the Actions icon like we did before, and selecting Document Activity, you can see that the drawing was synced in Autodesk 360 only minutes before.

Autodesk 360 at the fixed location showing where to find Document Activity on the Actions sub-menu.

Autodesk 360 at the fixed location showing where to find Document Activity on the Actions sub-menu.

The Document Activity list for A3 Training.dwg with the recent sync highlighted.

The Document Activity list for A3 Training.dwg with the recent sync highlighted.

If you refer back to Part 2 of this series, I showed you how to use Autodesk 360 to work with updated drawings and how you can collaborate with your stored documents in Autodesk 360. With the addition of AutoCAD WS on a mobile device (in this case, the iPad), you now have the ability not only to collaborate, but design on the fly, using a mobile device and show the document changes in Autodesk 360 as you go.  I stated that this leads to faster implementation of your design on site or on the factory shop floor.

Faster implementation and, as you now see, easy remote syncing of both drawings and regular documents makes for a much slicker workflow. The remote location using Wi-Fi and any kind of enabled tablet (not just an iPad, it could be an Android device, even a Kindle Fire) allows any organization to work GLOBALLY and almost anywhere.

The cloud is here and it is being used in many ways already. Autodesk are providing some superb tools that can be used with some of the cutting edge devices that are out there, such as the iPad, the Motorola Xoom (amongst many others). This technology WILL (and already is) revolutionizing  the way we work with not only CAD, but with all the documents used in the design process such as specifications, OEM manuals and the like. A typical example was the MS Word document in this part of the series.

As I said in Parts 2 and 3, it will allow us to embrace the mobile device movement and start to mobilise the CAD office/function in ways we never thought possible.

This is Part 4 of 4 for this series, so I bid you farewell for now but keep an eye for further blogs about tablet devices and mobile workflows!

Author: Shaun Bryant

Recommended Hardware for CAD, Part 1: AutoCAD, Inventor, Revit and Other Autodesk Applications

September 19, 2012 3 comments

Here at CADspeed, we get a lot of questions about buying new hardware for CAD applications. While the answer to, “What CAD hardware should I buy?” varies widely based on the person asking the question, it always starts in the same place: with the requirements of the CAD software you plan to use.

Yet a list of minimum requirements can be, well, only minimally helpful in the quest for the right CAD workstation. Most CAD users need hardware that will not just meet the minimum specifications, but enable them to maximize their productivity.

CAD software developers know this, and they have a vested interest in making sure you get the bang for your software buck. So this series will explore recommended hardware for a variety of common CAD applications from the makers of the applications themselves.

Autodesk

We start this series with Autodesk, creator of 3D design, engineering and entertainment software that includes some of the most commonly used applications in the industry. Autodesk has developed a web site to help users find certified or recommended software for Autodesk applications.

The truth is, however, many CAD users don’t use just one CAD software application. It’s very common to use both AutoCAD and Revit on the same system, for example. The intriguing part of the Autodesk hardware site is you can select multiple products and find the common driver and hardware configurations that will work best for your system.

Autodesk Certified and Recommended Hardware

Select up to three Autodesk products to find the best hardware configuration for you.

Certified vs. Recommended

On the Autodesk website, you’ll see two terms that you need to understand: certified and recommended. “Certified” hardware meets Autodesk’s minimum hardware requirements for the applicable Autodesk software product. At least one configuration (e.g., GPU + driver, or CPU + GPU + RAM + HD + BIOS) has passed tests designed to verify that the hardware supports the product’s features.

“Recommended” hardware meets Autodesk’s recommended system requirements for the applicable Autodesk product. At least one configuration has passed tests designed to verify that the hardware supports the product’s features.

A “Recommended” or “Certified” rating is based on the test results for a graphics card and driver or a complete system. Clicking the link for a card or system will reveal the results of each individual component tests.

Icon Rating Description*

Recommended – Meets Autodesk’s recommended system requirements and has passed all Autodesk certification tests.

Certified – Meets Autodesk’s minimum system requirements and has passed all Autodesk certification tests.
Icon Component Test Results*

Passed – When tested with this configuration, the hardware passed testing.

Passed with issues – When tested with this configuration, the hardware has some minor problems or features that are not supported.

Failed – When tested with this configuration, the hardware does not adequately support the product’s features.

No Results – This configuration has not been tested by the associated product.

* Test results are valid only for the tested combination of hardware and driver. Certified or Recommended status does not guarantee that the graphics hardware will operate acceptably with other drivers or configurations. Driver-specific test results are available for some hardware and can be found by clicking on a product name in the Hardware List.

Other Terms to Understand

Before using the Autodesk Certified Hardware site, you should understand a few other common terms to make sure you are getting the right results.

Graphics:

  • Workstation—Graphics hardware designated by the manufacturer as workstation-grade, typically meaning it is designed to work with 3D CAD applications
  • Consumer—Graphics hardware designated by the manufacturer for desktop or gaming level use, typically meaning it is not designed or recommended for use with 3D CAD applications
  • Mobile—Integrated hardware normally found in laptops.

Systems:

  • Workstation Desktop—Desktop system designated by the manufacturer as workstation-grade, typically meaning it is designed to work with 3D CAD applications
  • Workstation Laptop—Laptop designated by the manufacturer as workstation-grade, typically meaning it is designed to work with 3D CAD applications
  • Consumer Desktop—Desktop system designated by the manufacturer for desktop or gaming level use, typically meaning it is not designed or recommended for use with 3D CAD applications
  • Consumer Laptop—Laptop designated by the manufacturer for desktop or gaming level use, typically meaning it is not designed or recommended for use with 3D CAD applications.
  • Tablet—Touch-screen device with integrated components.

The Hardware List page contains only the hardware products that Autodesk has tested for use with certain Autodesk applications. Autodesk tests a variety of hardware, but focuses primarily on hardware the manufacturer has indicated is workstation-grade and designed to work with 3D CAD applications.

Unless otherwise noted, Autodesk hardware certification tests are run on systems containing a single video card with a single monitor attached. Autodesk does not currently run certification tests on systems with multiple graphics cards installed or multiple monitors.

Author: CADspeed Editors

Multiple Display Support for CAD Workstations

September 12, 2012 Leave a comment

The most compelling reason to install multiple GPUs is to drive multiple high-resolution displays. The secret’s out that “multi-mon” is the single best way to improve your productivity. Anyone who’s gone to two displays (or three — or more!) will tell you they could never go back to one. And more graphics cards can display more pixels across more monitors.

Which Graphics Card Works for You?

EyefinityThat said, you don’t necessarily need to populate two cards to run two monitors, so pay attention to the cards you’re selecting. NVIDIA’s Quadro with nView and Mosaic technology can support two displays across most of the product line. A single high-end AMD FirePro V7900, with its Eyefinity technology, can handle four on its own, thank you very much. As such, if your performance demands have you buying midrange or high-end cards, you might get all the screen real estate you want with one card. But if you’re much hungrier for pixels and screens than you are for polygons per second, you might consider two less-expensive, dual-monitor cards.

On top of multi-monitor support, you can use that extra slot to turn your workstation into a supercomputer. An exaggeration? Not to some. General-purpose computing on GPUs (GPGPU) technology is still evolving, but many of the applications that show the most promise are the ones of most interest to engineers and other CAD users: applications such as computational fluid
dynamics (CFD) and finite-element analysis (FEA). Simulation software developers such as ANSYS and Abaqus are porting code to harness GPUs to deliver big speed-ups — in many cases tenfold or even 100- fold increases — over CPU-only computation.

High-end graphics cards usually require more power than the 75 watts supplied by the typical x16 PCI Express interface. Workstation OEMs accommodate their extra needs via auxiliary power cables drawn from the supply. Some high-end and virtually all ultra high-end graphics cards are dual-slot thickness. They insert into one PCI Express x16 connector, but their thickness means an
adjacent x16 slot may be blocked and rendered useless.

Make the Right Choice

When purchasing a workstation online, the OEM’s product configurator should let you know if the chosen card or cards will mate to the chosen system, with respect to power supplies and connectors, the number of available PCI Express x16 slots, and whether a dual-slot card has sufficient clearance. For example, when outfitting graphics on a smaller chassis that can’t accommodate two dual-slot cards, chances are the OEM will only offer the option of two entry-level or two mid-range cards, both of which are single slot width.

For that matter, if you’re perusing the latest flavor of entry level workstation, full-length cards may not have clearance lengthwise. Again, the online configurator should ensure compatibility, so you shouldn’t have to worry about these issues.

Author: Alex Herrera

Choose the Right GPU for Your CAD Workstation

September 5, 2012 5 comments

A GPU manages how your computer graphics process and display and, thanks to parallel processing, is typically more efficient than a CPU. The GPUs that are best optimized for professional graphics-intensive applications, such as CAD, design visualization and analysis, are found in workstation caliber AMD FirePro and NVIDIA Quadro graphics cards.

Five Categories of GPUs

Such professional-caliber GPUs come in a variety of flavors for desktop as well as mobile form factors. In the more mature desktop arena, they tend to fall into five categories of add-in cards.

The first category is 2D GPUs. Professional 2D cards can manage some 3D processing, but are not optimized for regular or intensive 3D applications. They generally aren’t well suited for CAD use.

For professional-level CAD work, you’ll want a Quadro or FirePro 3D add-in card. Each of these product lines includes approximately half a dozen models that fall into the remaining four product categories, as defined here by Jon Peddie Research:

  • entry-level: $350 or less
  • mid-range: $350–$950
  • high-end: $950–$1,500
  • ultra high-end: $1,500 or more

There are always exceptions, but most buyers will want to match the performance and capabilities of the GPU with the rest of the system — that is, an entry-caliber card for an entry caliber workstation. Achieving good balance, where each component hits a performance level that is supported by the rest of the system, is the best way to maximize ROI for your workstation purchase and optimize your productivity.

Fortunately, most workstation OEMs today do this work for you, offering a subset of cards from AMD and NVIDIA that best match the capabilities of the model you’ve chosen.

Optimizing GPU Performance

Most graphics cards — and all performance-oriented models — slide into PCI Express x16 slots in the workstation. Graphics cards can be installed in open slots at the factory when ordering your new system, or anytime later if you buy a card off the shelf. A mid-life upgrade of your system with a latest-generation GPU can provide a cost-effective kick, for example if rendering becomes a bottleneck.

And unlike the machine that’s at your desk today, your new workstation (unless it’s a small–form factor model) will likely come equipped with at least two PCI Express x16 slots, able to accommodate two cards. Why would you want two (or more)? One reason is that multi-GPU technologies from NVIDIA (SLI) and AMD (CrossFire) allow the pairing of two cards (rendering alternate frames) to boost performance.

Author: Alex Herrera